
Software Engineering

and Architecture

Code Coverage

Quality of your Test Cases (?)

BlackBox and WhiteBox

• Whitebox testing (glassbox / structural)

– If we know the structure of code, we may construct test cases

that ensures we run through all parts of it – ensure all ‘structural’

elements are ”working”.

CS@AU Henrik Bærbak Christensen 2

input
output

Program structures

• Basically any program is a combination of only three

structures, or basic primes

– sequential: a block of code {...}

– decision: a switch if, switch, ...

– iteration: a loop while, repeat, do,

• WB focus on these basic primes and allow us to

– evaluate test sets with respect to their ability to exercise these

structures

– thus – evaluate quality of test sets (Hm….)

– and thus judge if a test set should be improved

Adequacy

• A necessary result of this focus is on adequacy (Da:

Tilstrækkelighed(?), dækning)

• Example:

– A test set T ensures that 100% of all statements in the production

code P are executed.

– T is statement adequate for P.

• More often used term:

“T ensures statement coverage for P”

– If less than 100% are executed then T is not statement adequate

for P.

– Note: IntelliJ calls it ‘line coverage’ which is actually confusing

• “int x = 8; int y = 9” is one line and two statements...

“kode-linjerne er 100%
dækket af test”

Example

• (With some fear,) I ran IntelliJ’s code coverage tool on my

own HotStone solution code…

CS@AU Henrik Bærbak Christensen 5

Example

• Result

CS@AU Henrik Bærbak Christensen 6

Conclusion: My
StandardGame is 100%
statement adequately

covered by test.

But?

• Why this low number for my Hero???

• Am I to be worried?

– No…

• getID() is obvious

implementation...

• toString() is auto-generated

by IntelliJ

CS@AU Henrik Bærbak Christensen 7

Key Points

• In my toolbox I perceive Code Coverage tools to help me

– Spot weaknesses in my testing

• Huh??? Why do I not get 100% statement coverage of my Hero???

• I will have to investigate that!

• But getting 100% often introduce extra work with no

value

– Spring 2025 I actually invested time to increase my coverage

CS@AU Henrik Bærbak Christensen 8

A Coverage Induced Test

• So I actually looked for missing line coverage, and then

introduced test cases to cover them

– Ala

• But...

– It is not TDD – toString() was generated by Intellij

– Thus – bit waste of time...

CS@AU Henrik Bærbak Christensen 9

But good to find weak spots

• Coverage helps me to spot aspects I have overlooked

– Often the red lines are in error handling

• Example

– Server side

code to

handle Card

CS@AU Henrik Bærbak Christensen 10

Example

CS@AU Henrik Bærbak Christensen 11

Adequacy Criteria

Criteria

• There are numerous adequacy criteria. WB focus on

program-based criteria but others are useful also in BB

and other types of testing.

• WB criteria

– statement coverage

– method coverage

– decision coverage

– path coverage, and many more

• Other types of criteria

– use case coverage (system level)

– interface coverage (integration level)

Aspects of WB

• WB look at code

– Corollary:

• WB does not start until late in the development process

• BB can be started earlier than WB

– Corollary:

• WB is only feasible for smaller UUTs

– because the flow graphs explode in large units

• BB can be used all the way to system level

– Corollary:

• WB is expensive for unstable UUTs

– because implementation changes invalidate the analysis!

• BB survives if the behavior + interface are stable

WB Coverage types

• Overall, there are a number of metrics for coverage:

– statement coverage

– decision coverage

– condition coverage

– decision/condition coverage

– multiple-condition coverage

– path coverage

• They all relate to the flow graph of code.

Flow graph/Flow chart

• The flow graph (Da: Rute diagram) is simply a diagram

that shows the flow of execution. Really old school ☺

• It defines a graph where nodes are basic primes (block,

decision, iteration) and edges are control flow between

them (the ProgramCounter ☺).

Example

Danish Tax

Source of Complex Algorithms

• Danish Topskat

• Limitation

– Only look at unmarried person (which simplifies it greatly)

– Exercise: complete the analysis ☺

CS@AU Henrik Bærbak Christensen 18

Design

• Direct – functional – approach

• EC analysis?

– Booleans

• Below and above ‘bundfradrag’

– 531.000 for personal income true/false

– 45.800 for capital income true/false

• However, we will look at the code for a WB analysis

• Exercise: Do the EC analysis and compare…

CS@AU Henrik Bærbak Christensen 19

Code and Flow Graph

CS@AU Henrik Bærbak Christensen 20

Note: On purpose this code is full of
defects!

Paths in Flow Graph

• We can name paths in

the flowgraph by the

subpaths

• E.g

– acd

– abe

– abd

– ace

CS@AU Henrik Bærbak Christensen 21

a

b

c

d

e

Statement coverage

• Statement coverage (SC):

• Requires every statement in the program to be

executed at least once

• Exercise:

– which path satisfy SC criterion?

Statement coverage

• SC criterion is pretty weak.

• Path ace is enough.

• A single test case suffice, which

ensures path c and path e...

But SC is a Weak Coverage

• Easy to introduce an error that our test case will not find

CS@AU Henrik Bærbak Christensen 24

Code is correct only when personal
income is above 531.000 kr. (As
taxBasis is reset correctly, then)

Decision coverage

• Decision coverage (branch coverage):

• Requires each decision has a true and false outcome

at least once

• Decision 1:

– pi > TTL

• Decision 2

– nci > TTNCIL

• Exercise:

– which paths satisfy DC criterion?

Decision coverage

• DC criterion is better

• TC1: D1 true D2 true

• TC2: D1 false D2 false
– Will find our ‘taxbasis = 100.000’ bug

JaCoCo

• Measures

– Statement coverage (*)

• (*) Actually bytecode!

– Decision coverage

• Call it ‘branch coverage’

• Exceptions not counted

• Green: Covered

• Yellow: Partially Cov.

– ‘some branches’ covered

• Red: Not Covered

CS@AU Henrik Bærbak Christensen 27

Our Tax Code

CS@AU Henrik Bærbak Christensen 28

Flagging Missed Branches:

• Disabled the low income test case and ran again...

CS@AU Henrik Bærbak Christensen 29

IntelliJ

• Up until E24, IntelliJ did not do branch coverage, but it

has changed ☺

– Click on the ‘yellow’ marking and you will see which branch was

and was not taken!

– The branch was not covered for ‘doShuffle == false’

• [Puzzling as this is the test flag; but was used in another

gradle project, so...]

CS@AU Henrik Bærbak Christensen 30

Decision coverage

• But an import aspect remains
in the code that DC’s does not
find?

• Which is?

• … that it only handles unmarried
persons
– The married stuff is not implemented

yet ☺

WhiteBox Test…

• ... looks at the code that is

• Not the specification ☺…

– Thus, the whole un-implemented part of handling married people

is not treated at all, yet the test cases pass and the DC coverage

is adequate…

• Another example:

– Is 100% statement coverage of ‘getPlayerInTurn()’ a good thing?

CS@AU Henrik Bærbak Christensen 32

And…

• The other coverage metrics are not considered in SWEA.

– Like multiple-condition coverage

• If (a && b && c && !d)

– All combinations of true/false of a, b, c, and d must be covered

• And most Code Coverage tools out there cannot even

compute them…

• From a practical point of view

– Complex to compute and make test cases for

– I doubt the return on investment, but – a personal gut feeling...

CS@AU Henrik Bærbak Christensen 33

Summary

Code Coverage Metrics

• Statement Coverage

– Tests execute every statement at least once

• Decision Coverage

– Tests execute every decision to true AND false at least once

• Code Coverage Tool

– Is nice to review in order to inspect potential code blocks that you

have forgotten to write test code for…

CS@AU Henrik Bærbak Christensen 35

