/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Code Coverage
Quality of your Test Cases (?)

eV BlackBox and WhiteBox

AARHUS UNIVERSITET
« Whitebox testing (glassbox / structural)

€ StandardGame.java

BOverride 10 ¥6 A v
public Status attackDard(Player playerAttacking, Card attackingCard, Card defendingCard) {
Status status = isValidPlayerInTurnAndOwningCard(playerAttacking, attackingCard);

27 @
if (status != Status.0K) return status;

// Not allowed to attack with sleeping card
if (lattackingCard.isActive())
return Status.ATTACK_NOT_ALLOWED_FOR_NON_ACTIVE_MINION;

// Not allowed to attack own cards
if (playerAttacking == defendingCard.getOwner())
return Status . ATTACK_NOT_ALLOWED_ON_OWN_MINION;

// Not allowed if defender is not taunt, and other taunt fielded
status = attributeValidationStrategy.isCardAttackValid(playerAttacking,

attackingCard, defendingCard, internalMutableGame: this); Bl
if (status != Status.0K)

return status;

— If we know the structure of code, we may construct test cases
that ensures we run through all parts of it — ensure all ‘structural’
elements are "working’.

CS@AU Henrik Baerbak Christensen 2

VeV Program structures

AARHUS UNIVERSITET

« Basically any program is a combination of only three
structures, o iC pti

— sequential: a block of code {...}
— decision: a switch if, switch, ...
— iteration: a loop while, repeat, do,

« \WB focus on these basic primes and allow us to

— evaluate test sets with respect to their ability to exercise these
structures

— thus — evaluate quality of test sets (Hm....)
— and thus judge if a test set should be improved

/v Adequacy

AARHUS UNIVERSITET

* A necessary result of this focus is on adequacy (Da:
Tilstreekkelighed(?), deekning)

 Example:

— Atest set T ensures that 100% of all statements in the production
code P are executed.

— T is statement adequate for P.
« More often used term: “kode-linjerne er 100%
“T ensures statement coverage for P” daekket af test”
— If less than 100% are executed then T is not statement adequate

for P.

— Note: Intellid calls it ‘line coverage’ which is actually confusing
 ‘intx=28;inty=9" is one line and two statements...

/v Example

AARHUS UNIVERSITET

* (With some fear,) | ran IntelliJ’'s code coverage tool on my
own HotStone solution code...

|
[Run 'All Tests'

" 1t Debug 'All Tests'
Maore Run/Debug [Run 'All Tests' with Coverage
Open In Modify Run Configuration...

CS@AU Henrik Baerbak Christensen 5

/v

Example

AARHUS UNIVERSITET Conclusion: My
« Result StandardGame is 100%
statement adequately
covered by test.
Element -~ Class, % Method, % Line, % Branch, %
> [=] privateinterface 100% (0/0) 100% (0/0) 100% (0/0) 100% (0/0)
> [2] roleinterface 100% (0/0) 100% (0/0) 100% (0/0) 100% (0/0)
» [rolestrategy 100% (0/0) 100% (0/Q) 100% (0/0) 100% (0/0)
~ [« standard 80% (4/5) 95% (84/88) 98% (241/245) 100% (66/66)
(©) GameConstants 0% (0f1) 100% (0/0) 100% (0/0) 100% (0/0)
(C) StandardCard 100% (1/1) 90% (20/22) 94% (35/37) 100% (12/12)
—@ StandardGame 100% (1/1) 100% (34/34) 100% (159/159) 100% (54/54)
(©) StandardHero 100% (1/1) 93% (14/15) 96% (31/32) 100% (0/0)
(C) StandardHotStoneGame 100% (1/1) 94% (16/17) 94% (16/17) 100% (0/0)
» [=] strategy 100% (0/0) 100% (0/0) 100% (0/0) 100% (0/0)
CS@AU > & variants 100% (30/... 96% (97/101) 98% (236/240) 100% (50/50)

/v

AARHUS UNIVERSITET

But?

* Why this low number for my Hero???

. Element ~ Class, % Method, % Line, % Branch, %
(©) GameConstants 0% (0/1) 100% (0/0) 100% (0/0) 100% (0/0)
(©) StandardCard 100% (1/1) 90% (20/22) 94% (35/37) 100% (12/12)
(©) StandardGame 100% (1/1) 100% (34/34) 100% (159/159) 100% (54/54)
(©) StandardHero 100% (1/1) 93% (14/15) 96% (31/32) 100% (0/0)

(C) StandardHotStoneGame 100% (1/1) 94% (16/17) 94% (16/17) 100% (0/0)

Henrik Baerbak Chr

([] Am I to be WO rried? ar publlcisir‘lng getID() { Petur'r;:‘l‘.d r

& Henrik Bzerbak Chr 1sen (ml.coffeelake)

— NO @ puD'L:Lc String tcStmng() {
" nn

final StringBuilder sb = new StringBuilder("StandardHero{");

getlD() is obvious
implementation...

» toString() is auto-generated
by IntelliJ

+

sb.append("effectStrateay=").append(effectStrategy);

sh.append(",
sb.append("

sb.append(",
sh.append(",
sb.append(",
sb.append(",

effectDescription="").append(effectDescription).append("\"'');

, type='").append(type).append('\'"');
sh.append(",

owner=").append(owner)
id="").append(id).append('\"'');
health=").append(health);
manaleft=").append(manaleft);
isActive=").append(isActive);

sb.append('}');

return sb.toString();

CS@AU Henrik Baerbak Christensen

/v Key Points

AARHUS UNIVERSITET
* In my toolbox | perceive Code Coverage tools to help me

« But getting 100% often introduce extra work with no
value
— Spring 2025 | actually invested time to increase my coverage

CS@AU Henrik Baerbak Christensen 8

/v A Coverage Induced Test

AARHUS UNIVERSITET

« So | actually looked for missing line coverage, and then
Introduced test cases to cover them
— Ala

public void shouldHaveHeroToString() {

Hero hero = new StandardHero(Player.FINDUS, GameConstants.THAI_CHEF_HERO_TYFPE);
String asString = hero.toString();

assertThat(asString, containsString(Player.FINDUS.name()));
assertThat(asString, containsString(GameConstants.THAI_CHEF_HERO_TYPE));
1

 But... —
— Itis not TDD — toString() was generated by Intellij =,

toString()
H H Override Methods... Ctrl+0
— Thus — bit waste of time... | i " L
Test...
CZZyrighl

CS@AU Henrik Baerbak Christensen o ® 9

- But good to find weak spots

AARHUS UNIVERSITET

« Coverage helps me to spot aspects | have overlooked
— Often the red lines are in error handling

@0verride

public String handleRequest(String request) {
g Exal I Iple // Do the demarshalling
RequestObject requestObject =
gson. fromJson(request, RequestObject.class);

— Server Slde String objectId = requestObject.getObjectId();
String operationName = requestObject.getOperationName();

COde tO ReplyObject reply = null;
handle Card // logger.info("method=handleRequest, context=start, opName={}", operationName);

[// Retrieve the card from the name service]

Card card = lookupCard(objectId);

// The caching/batch method clientproxy only has one operationName
¢ if (operationName.equals(OperationNames.CARD GET PODO)) {
// logger.info("method=handleRequest, card={}", card);
reply = new ReplyObject(HttpServletResponse.SC 0K, gson.tolson(card));
} else {
logger.error("method=handleRequest, context=exception, objectId={}, opName={}, err={}",
objectId, operationName, "Client is using pass-by-reference semantics, not supported.");
reply = new ReplyObject(
HttpServletResponse.SC INTERNAL SERVER ERROR,
"OperationName " + operationName
+ " suggests client is a pass-by-reference broker, which this server does not support.");

return gson.tolson(reply);

private Card lookupCard(S5tring objectId) {
¢ 1if (! nameService.containsCard(objectId)) {
throw new RuntimeException("Card with objectId=" + objectId + " is not in the nameservice.");
CS@AU }

return nameService.getCard(objectId);

/v Example

AARHUS UNIVERSI™ Goterride

public String handleRequest(String request) {
// Do the demarshalling
RequestObject requestObject =
gson.from)son(request, Requ
String objectId = requestObject.ge
String operationName = requestObjeq

—__

ReplyObject reply = null;
// logger.info("method=handleRequy

// Retrieve the card from the na
Card card = lookupCard(objectId)]

// The caching/batch method clientproXy o
¢ 1f (operationName.equals({OperationNames.CARD GET PODU
// logger.info("method=handleRequest, card={}", card);
reply = new ReplyObject(HttpServletResponse.5C 0K, gson.tolson(card));
} else {
logger.error("method=handleRequest, context=exception, objectId={}, opMame={}, err={}",
objectId, operationName, "Client is using pass-by-reference semantics, not supported.”);
reply = new ReplyObject(
HttpServletResponse.SC INTERNAL SERVER_ERROR,
"OperationName " + operationName
+ " suggests client is a pass-by-reference broker, which this server does not support.");
1
return gson.toldson(reply);

1

private Card lookupCard(String objectId) {
¢ 1f (! nameService.containsCard(objectId)) {
throw new RuntimeException("Card with objectId=" + objectId + " is not in the nameservice.");
1

return nameService.getCard(objectId);

CS@AU } MEHIIK DI VAR UHITISLEINISEI 1

/v

AARHUS UNIVERSITET

Adequacy Criteria

/v Criteria

AARHUS UNIVERSITET

« There are numerous adequacy criteria. WB focus on
program-based criteria but others are useful also in BB
and other types of testing.

 WB criteria
— statement coverage = ¢ v » v
_ methOd Coverage Element = Class, % Method, % Line, %
— decision coverage
— path coverage, and many more

« Other types of criteria
— use case coverage (system level)
— interface coverage (integration level)

s P e = —rns fm oL —mns JAmTmmE L

/v Aspects of WB

AARHUS UNIVERSITET

« \WB look at code

— Corollary:
« WB does not start until late in the development process
« BB can be started earlier than WB

— Corollary:

« WB is only feasible for smaller UUTs
— because the flow graphs explode in large units

« BB can be used all the way to system level

— Corollary:

« WB is expensive for unstable UUTs
— because implementation changes invalidate the analysis!

BB survives if the behavior + interface are stable

/v WB Coverage types

AARHUS UNIVERSITET

* QOverall, there are a number of metrics for coverage:
— statement coverage
— decision coverage
— condition coverage
— decision/condition coverage
— multiple-condition coverage
— path coverage

« They all relate to the flow graph of code.

/v Flow graph/Flow chart

AARHUS UNIVERSITET
« The flow graph (Da: Rute diagram) is simply a diagram
that shows the flow of execution. Really old school ©

|t defines a graph where nodes are basic primes (block,
decision, iteration) and edges are control flow between
them (the ProgramCounter ©).

Sample
Flow Chart

/v

AARHUS UNIVERSITET

Example

Danish Tax

Y o Source of Complex Algorithms

AARHUS UNIVERSITET
e Danish Topskat

2020

Du skal betale topskat af den del af din personlige indkomst, der overstiger 531.000 kr. (577174 kr.
fer AM-bidrag er trukket fra) 1 2020.

Eventuel positiv nettokapitalindkomst over 45.800 kr. regnes med i grundlaget for topskatten.

Det er ikke muligt at overfere en uudnyttet del af bundfradraget pa de 531.000 kr. fil en eventuel a2g-
tefzelle. Derimod kan der godt overferes en uudnyttet del af bundfradraget pa de 45.800 kr.

« Limitation
— Only look at unmarried person (which simplifies it greatly)
— Exercise: complete the analysis ©

CS@AU Henrik Baerbak Christensen 18

/v Design

AARHUS UNIVERSITET
* Direct — functional — approach

public int topskat(int personalIncome, int netCapitallncome,

Status marriageStatus, int spouseNetCapitalIncome) {
« EC analysis?
— Booleans
* Below and above ‘bundfradrag’
— 531.000 for personal income true/false
— 45.800 for capital income true/false

 However, we will look at the code for a WB analysis
« Exercise: Do the EC analysis and compare...

CS@AU Henrik Baerbak Christensen 19

/v

AARHUS UNIVERSITET

public static fimal int TOP_TAX_LIMIT = 53
private static final double TOP_TAX_PCT =

private static fimal int TOP_TAX_NCI_LIMIT =

public int topskat(int personalIncome, int
Status marriageStatus,
int taxBasis = B;
if (personalIncome > TOP_TAX_LIMIT) {

taxBasis = personalIncome - TOP_TAX_LIMIT;

I3
if (netCapitalIncome > TOP_TAX_NCI_LIM

taxBasis += netCapitalIncome - TOP_

r
return (int) (taxBasis * TOP_TAX_PCT);

Code and Flow Graph

1000; P/c;T'T\L I"—wﬁ/
8.15;

\

45800; th=prorm
netCapitalIn q:f-__=————~\{
int spoug@#etCapitalIncome) {

/\m

TNcrL

TAX_NCI_LIMIT;

Note: On purpose this code is full of

defects!

CS@AU

Henrik Baerbak Christensen 20

/v Paths in Flow Graph

AARHUS UNIVERSITET
 We can name paths in E
the flowgraph by the i TR c |
subpaths ﬁk IL\(
- E.g
— acd \} W\’E

— abe
— abd
— ace

th 4= nee ;TL‘NCI

@'\

CS@AU Henrik Baerbak Christensen 21

/v

AARHUS UNIVERSITET
« Statement coverage (SC):

 Requires every statement in the program to be
executed at least once

Statement coverage

EJ/

¢ ZTTL

- Exercise: T
— which path satisfy SC criterion?

[o= m[
public static final int TOP_TAX_LIMIT = 5318088; f_/ﬁ(
private static final double TOP_TAX_PCT = 8.15;

private static final int TOP_TAX_NCI_LIMIT = 45808; V

public int topskat(int personallncome, int netCapitallncome, H/Et:b TTM‘.:L‘{_ Tw-(
Status marriageStatus, int spouseNetCapitalIncome) { /
int taxBasis = @; \/; E
if (persona 1Income > TOP_TAX_LIMIT) {
—

taxBasis = personallncome - TOP_TAX_LIMIT;

False i
1.{;'11 += ne o *T‘.L‘Ner
if (netCapitalIncome > TOP_TAX_NCI_LIMIT) {
taxBasis += netCapitalIncome - TOP_TAX_NCI_LIMIT; E
'
re

turn (int) (taxBasis # TOP_TAX_PCT);

) v

/v Statement coverage

AARHUS UNIVERSITET

« SC criterion is pretty weak.
- Path ace is enough.

« Asingle test case suffice, which
ensures path c and path e...

void shouldTaxFo réE]E]HPLuséEJFd() 1

int tax = (int) ((69008+14288) *.15);

assertThat(taxcalc.topskat(personalincome: 488888, netCapitalincome: 488080,
Status.NOT_MARRIED, spouseMetCapitalincome: @),
is(tax));

/v But SC is a Weak Coverage

AARHUS UNIVERSITET
« Easy to introduce an error that our test case will not find

public int topskat(int personalIncome, int netCapitalIncome,
Status marriageStatus, int spouseNetCapitalIncome) {
|int taxBasis = l@@@@@;l
if (personallncome > TOP_TAX_LIMIT) {
taxBasis = personalIncome - TOP_TAX_LIMIT;

}
if (netCapitalIncome > TOP_TAX_NCI_LIMIT) {
taxBasis += netCapitalIncome - TOP_TAX_NCI_LIMIT;
}
return (int) (taxBasis & TOP_TAX_PCT);

Code is correct only when personal shouldPayTaxFor600plus40K()

income is above 531.000 kr. (As
taxBasis is reset correctly, then)

CS@AU Henrik Baerbak Christensen 24

/v Decision coverage

AARHUS UNIVERSITET
« Decision coverage (branch coverage):

* Requires each decision has a true and false outcome
at least once |y L

« Decision 1: Fom e —
— pi>TTL i 4= riora)
+ Decision 2 o<
— nci > TTNCIL A s T
+ Exercise: P H_:L?m_

— which paths satisfy DC criterion? b /{\Eﬂ

\/

/v Decision coverage

AARHUS UNIVERSITET

« DC criterion is better
e TC1: D1 true D2 true

« TC2: D1 false D2 false
— Will find our ‘taxbasis = 100.000’ bug

shouldMotPayTopTaxForLowlncor
shouldPayTaxFor600plus40K()

DanishTopTax > shouldNotPayTopTaxForLowIncome()

java.lang.AssertionError at DanishTopTax.java:15

bl JaCoCo

AARHUS UNIVERSITET
[Measures Bl?v“'ergel\-“lojo-]ava > @ Docker Hub x |+

€ © Jjacoco.org/jacoco/trunk/coverage/jacoco-maven-pluginforgjacc E1 € Search

Lol CACTCIIICLUSUEL LfUSQUSL — OSW LACCE LICLUSUSL | [/

— Statement coverage (*)
* (") Actually bytecode! S N |
— DeCiSion Cove rage fina:h;;::SEE;Zi:ZZEE;EEE;:i§:i:;e:; = ne.w FileSetManager (getLog()):

& for (final FileSet fileSet : fileSets)

load (loader) ;
save (loader) ;

for (final S5tring includedFilename : fileSetManager

) Ca” it ‘branCh Coverage’ & .getIncludedFiles (fileSet))

final File inputFile = mnew File (fileSet.getDirectory(),
includedFilename) ;

 Exceptions not counted &
__
« Green: Covered

"Loading execution data file "
+ inputFile.getAbsoclutePathi))

u loader.load (inputFile) ;
[) Yel IOW. Pa rtlal |y COV } catech (fimal ICException e) {
- - throw new MojoExecutionException ("Unable to read "
+ inputFile.getikbsolutePath(), =)
‘some branches’ covered
+ Red: Not C
e - O Ove re private void save(final ExecFileloader loader)

throws MojoExecutionException {

L if (loader.getExecutionDataStore () .getContents () .isEmpty())
getLog () .info (MS5G SKIPPING) ;
retorn:;

CS@AU Henrik Baerbak Christensen 27

bl Our Tax Code

AARHUS UNIVERSITET

csdev@mi: S gradle test jacocoTestReport

[mm danish-top-skat > f3 cs.5wea.tax

cS.swea.tax

Element Missed Instructionss= Cov.+ Missed Branchess Cowv.= B
TaxCalculatorjava 100% 100%
Status.java] 100% n/a
Total 0 of 36 100% 0of4 100%
TaxCalculator.java
j:;Twis Java source file was generated by the Gradle 'init' task.

package cs.swea.tax;
public class TaxCalculator {

public static final int TOP_TAX LIMIT = 531000;
private static final double TOP_TAX PCT = 0.15;
private static final int TOP_TAX NCI_LIMIT = 45800;

public int topskat(int personallncome, int netCapitalIncome,
Status marriageStatus, int spouseNetCapitalIncome) {
int taxBasis = 0;
& if (personallncome = TOP_TAX LIMIT) {
taxBasis = personalIncome - TOP_TAX LIMIT;

iy
@ if (netCapitalIncome = TOP_TAX NCI LIMIT) {
taxBasis += netCapitalIncome - TOP_TAX NCI LIMIT;

}
return (int) (taxBasis * TOP_TAX PCT);

CS@AU Henrik Baeri -2 *— 28

/v Flagging Missed Branches:

AARHUS UNIVERSITET
« Disabled the low income test case and ran again...

@bisabled
@Test
TaxCalculator.java void shouldNotPayTopTaxForLowIncome() {
WL assertThat(taxcalc.topskat(520000, 10800,
2. | # This Java source file was generated by the Gradle 'init' task. Status.NDT_MARRIED, E:':' r
3. is(0));
4. package cs.swea.tax; }
5.
6. public class TaxCalculator {
7.
8. public static final int TOP_TAX LIMIT = 531000; —
9. private static final double TOP_TAX PCT = 0.15;
10. private static final int TOP TAX NCI LIMIT = 45800;
11.
12. public int topskat(int personalIncome, int netCapitalIncome,
13. Status marriageStatus, int spouseNetCapitalIncome) {
14. int taxBasis = 0;
15. |@ if (personalIncome > TOP_TAX LIMIT) {
16. taxBasis = personallncome - TOP_TAX LIMIT;
17. }
18. |& if (netCapitalIncome > TOP_TAX NCI LIMIT) {
19. taxBasis += netCapitalIncome - TOP TAX NCI LIMIT;
20. }
21. return (int) (taxBasis * TOP_TAX PCT);
22. }
23. |}

CS@AU Henrik Baerbak Christensen 29

/v IntelliJ

AARHUS UNIVERSITET

* Up until E24, IntelliJ did not do branch coverage, but it
has changed ©

— Click on the ‘yellow’ marking and you will see which branch was
and was not taken!

ar @, public List<MutableCard> createDeck(Player player) {

List<MutableCard> thisDeck = new Arraylist<=();

DeckBuildHelper.populateDeckWithTwoSetsO0f(player, thisDeck, player == Player.FINDUS ? piStoneMexiCards : piStoneDanishCards);
if (doShuffle) {

& L [3 @ Hide coverage Helper.shuffleDeckWithManaBias (thisDeck);

Hits: 2
doShuffle == Player.PEDDERSEN) {

true hits: 2 add(index: 8, DeckBuildHelper.createCardFromSpec(player, CardLib.musli_bar));
false hits: @

return thisDeck;
I3

— The branch was not covered for ‘doShuffle == false’

» [Puzzling as this is the test flag; but was used in another
gradle project, so...]

CS@AU Henrik Baerbak Christensen 30

/v Decision coverage

AARHUS UNIVERSITET

« But an import aspect remains
in the code that DC’s does not

find?

 Which is?

shouldNotPayTopTaxForLowlncome()
shouldPayTaxFor600plus40K()

« ... thatit only handles unmarried

persons

— The married stuff is not implemented
yet ©

VeV WhiteBox Test...

AARHUS UNIVERSITET
 ...looks at the code that is

* Not the specification ©...

— Thus, the whole un-implemented part of handling married people
is not treated at all, yet the test cases pass and the DC coverage
IS adequate...

* Another example:
— Is 100% statement coverage of ‘getPlayerinTurn()’ a good thing?

public class StandardHotStoneGame implements Game {
@verride
public Player getPlayerInTurn() {
[/ FAKE-IT
return Player.FINDUS;

@dverride
public Hero getHero(Player who) {
return null;

CS@AU } 32

Y And...
AARHUS UNIVERSITET

« The other coverage metrics are not considered in SWEA.

— Like multiple-condition coverage

e If(a&& b && c && !Id)
— All combinations of true/false of a, b, ¢, and d must be covered

« And most Code Coverage tools out there cannot even
compute them...

 From a practical point of view
— Complex to compute and make test cases for
— | doubt the return on investment, but — a personal gut feeling...

/v

AARHUS UNIVERSITET

Summary

/v Code Coverage Metrics

AARHUS UNIVERSITET

« Statement Coverage
— Tests execute every statement at least once

« Decision Coverage
— Tests execute every decision to frue AND false at least once

« Code Coverage Tool

— Is nice to review in order to inspect potential code blocks that you
have forgotten to write test code for...

